Loquetier: A Virtualized Multi-LoRA Framework for Unified LLM Fine-tuning and Serving

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLMs
Abstract: Low-Rank Adaptation (LoRA) has become a widely adopted parameter-efficient fine-tuning (PEFT) technique for adapting large language models (LLMs) to downstream tasks. While prior work has explored strategies for integrating LLM training and serving, there still remains a gap in unifying fine-tuning and inference for LoRA-based models. We present **Loquetier**, a virtualized multi-LoRA framework that seamlessly integrates LoRA fine-tuning and serving within a single runtime. Loquetier introduces two key components: (1) a Virtualized Module that isolates PEFT-based modifications and supports multiple adapters on a shared base model, and (2) an optimized computation flow with a kernel design that merges fine-tuning and inference paths in forward propagation, enabling efficient batching and minimizing kernel invocation overhead. Extensive experiments across three task settings show that Loquetier consistently outperforms existing baselines in both performance and flexibility, achieving up to $3.0\times$ the throughput of the state-of-the-art co-serving system on inference-only tasks and $46.4\times$ higher SLO attainment than PEFT on unified fine-tuning and inference tasks. The implementation of Loquetier is publicly available at https://github.com/NJUDeepEngine/Loquetier.
Primary Area: Infrastructure (e.g., libraries, improved implementation and scalability, distributed solutions)
Submission Number: 13504
Loading