Variational Learning ISTADownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: compressed sensing, LISTA, variational models, inverse problems
Abstract: Compressed sensing combines the power of convex optimization techniques with a sparsity inducing prior on the signal space to solve an underdetermined system of equations. For many problems, the sparsifying dictionary is not directly given, nor its existence can be assumed. Besides, the sensing matrix can change across different scenarios. Addressing these issues requires solving a sparse representation learning problem, namely dictionary learning, taking into account the epistemic uncertainty on the learned dictionaries and, finally, jointly learning sparse representations and reconstructions under varying sensing matrix conditions. We propose a variant of the LISTA architecture that incorporates the sensing matrix into the architecture. In particular, we propose to learn a distribution over dictionaries via a variational approach, dubbed \ac{VLISTA}, which approximates a posterior distribution over the dictionaries as part of an unfolded LISTA-based recovery network. Such a variational posterior distribution is updated after each iteration, and thereby adapts the dictionary according to the optimization dynamics. As a result, \ac{VLISTA} provides a probabilistic way to jointly learn the dictionary distribution and the reconstruction algorithm with varying sensing matrices. We provide theoretical and experimental support for our architecture and show that it learns calibrated uncertainties.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
12 Replies

Loading