EraseDiff: Erasing Data Influence in Diffusion Models

26 Sept 2024 (modified: 13 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: machine unlearning, diffusion model
TL;DR: An effective and efficient unlearning algorithm for diffusion generative models.
Abstract: We introduce EraseDiff, an unlearning algorithm designed for diffusion models to address concerns related to data memorization. Our approach formulates the unlearning task as a constrained optimization problem, aiming to preserve the utility of the diffusion model on retained data while removing the information associated with the data to be forgotten. This is achieved by altering the generative process to deviate away from the ground-truth denoising procedure. To manage the computational complexity inherent in the diffusion process, we develop a first-order method for solving the optimization problem, which has shown empirical benefits. Extensive experiments and thorough comparisons with state-of-the-art algorithms demonstrate that EraseDiff effectively preserves the model's utility, efficacy, and efficiency.
Supplementary Material: pdf
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7951
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview