Keywords: emergent communication, attention mechanism, compositionality, interpretability
TL;DR: We study emergent language from attention agents with the referential game showing that their language is more compositional and interpretable.
Abstract: To develop computational agents that can better communicate with others using their own emergent language, we endow the agents with an ability to focus their attention on particular concepts in the environment. Humans often understand a thing or scene as a composite of concepts and those concepts are further mapped onto words. We implement this intuition as attention mechanisms in Speaker and Listener agents in a referential game and show attention leads to more compositional and interpretable emergent language. We also demonstrate how attention helps us understand the learned communication protocol by investigating the attention weights associated with each message symbol and the alignment of attention weights between Speaker and Listener agents. Overall, our results suggest that attention is a promising mechanism for developing more human-like emergent language.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/emergent-communication-with-attention/code)
10 Replies
Loading