Optimal Neural Network Approximation of Wasserstein Gradient Direction via Convex OptimizationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Bayesian inference, convex optimization, semi-definite programming
Abstract: The computation of Wasserstein gradient direction is essential for posterior sampling problems and scientific computing. The approximation of the Wasserstein gradient with finite samples requires solving a variational problem. We study the variational problem in the family of two-layer networks with squared-ReLU activations, towards which we derive a semi-definite programming (SDP) relaxation. This SDP can be viewed as an approximation of the Wasserstein gradient in a broader function family including two-layer networks. By solving the convex SDP, we obtain the optimal approximation of the Wasserstein gradient direction in this class of functions. Numerical experiments including PDE-constrained Bayesian inference and parameter estimation in COVID-19 modeling demonstrate the effectiveness of the proposed method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Optimization (eg, convex and non-convex optimization)
TL;DR: Wasserstein gradient descent meets neural networks and convex optimization
4 Replies

Loading