LSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term PromptingDownload PDF

Anonymous

16 Feb 2024 (modified: 26 Sept 2024)ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Time-series forecasting (TSF) finds broad applications in real-world scenarios. Prompting off-the-shelf Large Language Models (LLMs) demonstrates strong zero-shot TSF capabilities while preserving computational efficiency. However, existing prompting methods oversimplify TSF as language next-token predictions, overlooking its dynamic nature and lack of integration with state-of-the-art prompt strategies such as Chain-of-Thought. Thus, we propose LSTPrompt, a novel approach for prompting LLMs in zero-shot TSF tasks. LSTPrompt decomposes TSF into short-term and long-term forecasting sub-tasks, tailoring prompts to each. LSTPrompt guides LLMs to regularly reassess forecasting mechanisms to enhance adaptability. Extensive evaluations demonstrate consistently better performance of LSTPrompt than existing prompting methods, and competitive results compared to foundation TSF models.
Paper Type: short
Research Area: NLP Applications
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview