Keywords: Autonomous Driving, 3D Object Detection, Test-time Error Correction
TL;DR: This paper introduces Test-time Correction (TTC), a novel online 3D detection system designated for swift correction of test-time errors via human feedback to ensure the reliance on safety-critical autonomous driving systems.
Abstract: This paper introduces Test-time Correction (TTC) system, a novel online 3D detection system designated for online correction of test-time errors via human feedback, to guarantee the safety of deployed autonomous driving systems. Unlike well studied offline 3D detectors frozen at inference, TTC explores the capability of instant online error rectification. By leveraging user feedback with interactive prompts at a frame, e.g., a simple click or draw of boxes, TTC could immediately update the corresponding detection results for future streaming inputs, even though the model is deployed with fixed parameters. This enables autonomous driving systems to adapt to new scenarios flexibly and decrease deployment risks reliably without additional expensive training. To achieve such TTC system, we equip existing 3D detectors with OA module, an online adapter with prompt-driven design for online correction. At the core of OA module are visual prompts, images of missed object-of-interest for guiding the corresponding detection and subsequent tracking. Those visual prompts, belonging to missed objects through online inference, are maintained by the visual prompt buffer for continuous error correction in subsequent frames. By doing so, TTC consistently detects online missed objects and immediately lowers down driving risks. It achieves reliable, versatile, and adaptive driving autonomy. Extensive experiments demonstrate significant gain on instant error rectification over pre-trained 3D detectors, even in challenging scenarios with limited labels, zero-shot detection, and adverse conditions. We hope this work would inspire the community to investigate online rectification systems for autonomous driving post-deployment. Code would be publicly shared.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 665
Loading