Towards a Pairwise Ranking Model with Orderliness and Monotonicity for Label Enhancement

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: label polysemy, label distribution learning, label enhancement
Abstract: Label distribution in recent years has been applied in a diverse array of complex decision-making tasks. To address the availability of label distributions, label enhancement has been established as an effective learning paradigm that aims to automatically infer label distributions from readily available multi-label data, e.g., logical labels. Recently, numerous works have demonstrated that the label ranking is significantly beneficial to label enhancement. However, these works still exhibit deficiencies in representing the probabilistic relationships between label distribution and label rankings, or fail to accommodate scenarios where multiple labels are equally important for a given instance. Therefore, we propose PROM, a pairwise ranking model with orderliness and monotonicity, to explain the probabilistic relationship between label distributions and label rankings. Specifically, we propose the monotonicity and orderliness assumptions for the probabilities of different ranking relationships and derive the mass functions for PROM, which are theoretically ensured to preserve the monotonicity and orderliness. Further, we propose a generative label enhancement algorithm based on PROM, which directly learns a label distribution predictor from the readily available multi-label data. Finally, extensive experiments demonstrate the efficacy of our proposed model.
Supplementary Material: zip
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 14807
Loading