FedGO : Federated Ensemble Distillation with GAN-based Optimality

28 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Federated learning, ensemble distillation, data heterogeneity, generative adversarial network
Abstract: For federated learning in practical settings, a significant challenge is the considerable diversity of data across clients. To tackle this data heterogeneity issue, it has been recognized that federated ensemble distillation is effective. Federated ensemble distillation requires an unlabeled dataset on the server, which could either be an extra dataset the server already possesses or a dataset generated by training a generator through a data-free approach. Then, it proceeds by generating pseudo-labels for the unlabeled data based on the predictions of client models and training the server model using this pseudo-labeled dataset. Consequently, the efficacy of ensemble distillation hinges on the quality of these pseudo-labels, which, in turn, poses a challenge of appropriately assigning weights to client predictions for each data point, particularly in scenarios with data heterogeneity. In this work, we suggest a provably near-optimal weighting method for federated ensemble distillation, inspired by theoretical results in generative adversarial networks (GANs). Our weighting method utilizes client discriminators, trained at the clients based on a generator distributed from the server and their own datasets. Our comprehensive experiments on various image classification tasks illustrate that our method significantly improves the performance over baselines, under various scenarios with and without extra server dataset. Furthermore, we provide an extensive analysis of additional communication cost, privacy leakage, and computational burden caused by our weighting method.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13731
Loading