Abstract: Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor-intensive. We present a fully automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT) framework to leverage these LLM-generated KCs, which we refer to as KCGen-KT. We conduct extensive quantitative and qualitative evaluations on a real-world student code submission dataset. We find that KCGen-KT outperforms existing KT methods and human-written KCs on future student response prediction. We investigate the learning curves of generated KCs and show that LLM-generated KCs result in a better fit than human-written KCs under a cognitive model. We also conduct a human evaluation with course instructors to show that our pipeline generates reasonably accurate problem-KC mappings.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: educational applications
Languages Studied: English
Submission Number: 4110
Loading