A case for data valuation transparency via DValCards

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: data valuation, fair compensation, transparency, fairness, bias
TL;DR: We show that data valuation methods can be biased and unstable, necessitating the need for DValCards for improved transparency
Abstract:

Following the rise in popularity of data-centric machine learning (ML), various data valuation methods have been proposed to quantify the contribution of each datapoint to desired ML model performance metrics (e.g., accuracy). Beyond the technical applications of data valuation methods (e.g., data cleaning, data acquisition, etc.), it has been suggested that within the context of data markets, data buyers might utilize such methods to fairly compensate data owners. Here we demonstrate that data valuation metrics are inherently biased and unstable under simple algorithmic design choices, resulting in both technical and ethical implications. By analyzing 9 tabular classification datasets and 6 data valuation methods, we illustrate how (1) common and inexpensive data pre-processing techniques can drastically alter estimated data values; (2) subsampling via data valuation metrics may increase class imbalance; and (3) data valuation metrics may undervalue underrepresented group data. Consequently, we argue in favor of increased transparency associated with data valuation in-the-wild and introduce the novel Data Valuation Cards (DValCards) framework towards this aim. The proliferation of DValCards will reduce misuse of data valuation metrics, including in data pricing, and build trust in responsible ML systems.

Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7961
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview