Abstract: Gait recognition is beneficial for a variety of applications, including video surveillance, crime scene investigation, and social security, to mention a few. However, gait recognition often suffers from multiple exterior factors in real scenes, such as carrying conditions, wearing overcoats, and diverse viewing angles. Recently, various deep learning-based gait recognition methods have achieved promising results, but they tend to extract one of the salient features using fixed-weighted convolutional networks, do not well consider the relationship within gait features in key regions, and ignore the aggregation of complete motion patterns. In this paper, we propose a new perspective that actual gait features include global motion patterns in multiple key regions, and each global motion pattern is composed of a series of local motion patterns. To this end, we propose a Dynamic Aggregation Network (DANet) to learn more discriminative gait features. Specifically, we create a dynamic attention mechanism between the features of neighboring pixels that not only adaptively focuses on key regions but also generates more expressive local motion patterns. In addition, we develop a self-attention mechanism to select representative local motion patterns and further learn robust global motion patterns. Extensive experiments on three popular public gait datasets, i.e., CASIAB, OUMVLP, and Gait3D, demonstrate that the proposed method can provide substantial improvements over the current state-of-the-art methods.
Loading