Keywords: Neural Multi-Objective Combinatorial Optimization, Multimodal Fusion, Deep Reinforcement Learning
TL;DR: This paper proposes a graph-image multimodal fusion framework for neural multi-objective combinatorial optimization.
Abstract: Existing neural multi-objective combinatorial optimization (MOCO) methods still exhibit an optimality gap since they fail to fully exploit the intrinsic features of problem instances. A significant factor contributing to this shortfall is their reliance solely on graph-modal information. To overcome this, we propose a novel graph-image multimodal fusion (GIMF) framework that enhances neural MOCO methods by integrating graph and image information of the problem instances. Our GIMF framework comprises three key components: (1) a constructed coordinate image to better represent the spatial structure of the problem instance, (2) a problem-size adaptive resolution strategy during the image construction process to improve the cross-size generalization of the model, and (3) a multimodal fusion mechanism with modality-specific bottlenecks to efficiently couple graph and image information. We demonstrate the versatility of our GIMF by implementing it with two state-of-the-art neural MOCO backbones. Experimental results on classic MOCO problems show that our GIMF significantly outperforms state-of-the-art neural MOCO methods and exhibits superior generalization capability.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13570
Loading