Causal Bandits without prior knowledge using separating setsDownload PDF

Published: 09 Feb 2022, Last Modified: 05 May 2023CLeaR 2022 PosterReaders: Everyone
Abstract: The Causal Bandit is a variant of the classic Bandit problem where an agent must identify the best action in a sequential decision-making process, where the reward distribution of the actions displays a non-trivial dependence structure that is governed by a causal model. All methods proposed for this problem thus far in the literature rely on exact prior knowledge of the full causal. We formulate new causal bandit algorithms that no longer necessarily rely on prior causal knowledge. Instead, they utilize an estimator based on separating sets, which we can find using simple conditional independence tests or causal discovery methods. We show that, for discrete i.i.d. data, this estimator is unbiased, and has variance which is upper bounded by that of the sample mean. We develop algorithms based on Thompson Sampling and UCB for discrete and Gaussian models respectively and show increased performance on simulation data as well as on a bandit drawing from real-world protein signaling data.
8 Replies

Loading