Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Granger causality, Time-varying, Time series, Neural network
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The neural network has emerged as a practical approach to evaluate the Granger causality in multivariate time series. However, most existing studies on Granger causality inference are based on time-invariance. In this paper, we propose a novel MLP architecture, Granger Causality Mixer (GC-Mixer), which extracts parameters from the weight matrix and imposes the hierarchical group lasso penalty on these parameters to infer time-invariant Granger causality and automatically select time lags. Furthermore, we extend GC-Mixer by introducing a multi-level fine-tuning algorithm to split time series automatically and infer time-varying Granger causality. We conduct experiments on the VAR and Lorenz-96 datasets, and the results show that GC-Mixer achieves outstanding performances in Granger causality inference.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3298
Loading