RLLTE: Long-Term Evolution Project of Reinforcement Learning

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: reinforcement learning, framework, benchmark, open-source, library, intrinsic reward, data augmentation, copilot, LLM
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A promising framework for the long-term evolution of reinforcement learning.
Abstract: We present RLLTE: a long-term evolution, extremely modular, and open-source framework for reinforcement learning (RL) research and application. Beyond delivering top-notch algorithm implementations, RLLTE also serves as a toolkit for developing algorithms. More specifically, RLLTE decouples the RL algorithms completely from the exploitation-exploration perspective, providing a large number of prototypes to accelerate algorithm development and evolution. In particular, RLLTE is the first RL framework to build a complete and luxuriant ecosystem, which includes model training, evaluation, deployment, benchmark hub, and large language model (LLM)-empowered copilot. RLLTE is expected to set standards for RL engineering practice and be highly stimulative for industry and academia.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1867
Loading