COT Flow: Learning Optimal-Transport Image Sampling and Editing by Contrastive Pairs

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: generative models, consistency models, diffusion models, optimal transport
TL;DR: Generative flow using optimal transport regularization
Abstract: Diffusion models have demonstrated strong performance in sampling and editing multi-modal data with high generation quality, yet they suffer from the iterative generation process which is computationally expensive and slow. In addition, most methods are constrained to generate data from Gaussian noise, which limits their sampling and editing flexibility. To overcome both disadvantages, we present Contrastive Optimal Transport Flow (COT Flow), a new method that achieves fast and high-quality generation with improved zero-shot editing flexibility compared to previous diffusion models. Benefiting from optimal transport (OT), our method has no limitation on the prior distribution, enabling unpaired image-to-image (I2I) translation and doubling the editable space (at both the start and end of the trajectory) compared to other zero-shot editing methods. In terms of quality, COT Flow can generate competitive results in merely one step compared to previous state-of-the-art unpaired image-to-image (I2I) translation methods. To highlight the advantages of COT Flow through the introduction of OT, we introduce the COT Editor to perform user-guided editing with excellent flexibility and quality.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11210
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview