Keywords: data synthesis, differential privacy, data evaluation
Abstract: Differentially private (DP) synthetic data generation is a promising technique for utilizing private datasets that otherwise cannot be exposed for model training or other analytics. While much research literature has focused on generating private unstructured text and image data, in enterprise settings, structured data (e.g., tabular) is more common, often including natural language fields or components. Existing synthetic data evaluation techniques (e.g., FID) struggle to capture the structural properties and correlations of such datasets. In this work, we propose Struct-Bench, a framework and benchmark for evaluating synthetic datasets derived from structured datasets that contain natural language data. The Struct-Bench framework requires users to provide a representation of their dataset structure as a Context-Free Grammar (CFG). Our benchmark comprises 5 real-world and 2 synthetically generated datasets. We show that these datasets demonstrably present a great challenge even for state-of-the-art DP synthetic data generation methods. Struct-Bench provides reference implementations of different metrics and a leaderboard, offering a standardized platform to benchmark and investigate privacy-preserving synthetic data methods. We also present a case study showing how Struct-Bench improves the synthetic data quality of Private Evolution (PE) on structured data. The benchmark and the leaderboard have been publicly made available at https://struct-bench.github.io.
Croissant File: json
Dataset URL: https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets
Code URL: https://github.com/struct-bench/structpe
Supplementary Material: zip
Primary Area: Evaluation (e.g., data collection methodology, data processing methodology, data analysis methodology, meta studies on data sources, extracting signals from data, replicability of data collection and data analysis and validity of metrics, validity of data collection experiments, human-in-the-loop for data collection, human-in-the-loop for data evaluation)
Submission Number: 2163
Loading