Physics-Regulated Deep Reinforcement Learning: Invariant Embeddings

Published: 16 Jan 2024, Last Modified: 24 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Physics-informed deep reinforcement learning, Safety-critical autonomous systems
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Physics-regulated DRL
Abstract: This paper proposes the Phy-DRL: a physics-regulated deep reinforcement learning (DRL) framework for safety-critical autonomous systems. The Phy-DRL has three distinguished invariant-embedding designs: i) residual action policy (i.e., integrating data-driven-DRL action policy and physics-model-based action policy), ii) automatically constructed safety-embedded reward, and iii) physics-model-guided neural network (NN) editing, including link editing and activation editing. Theoretically, the Phy-DRL exhibits 1) a mathematically provable safety guarantee and 2) strict compliance of critic and actor networks with physics knowledge about the action-value function and action policy. Finally, we evaluate the Phy-DRL on a cart-pole system and a quadruped robot. The experiments validate our theoretical results and demonstrate that Phy-DRL features guaranteed safety compared to purely data-driven DRL and solely model-based design while offering remarkably fewer learning parameters and fast training towards safety guarantee.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: reinforcement learning
Submission Number: 1772
Loading