Towards Accurate and Calibrated Classification: Regularizing Cross-Entropy From A Generative Perspective

ICLR 2026 Conference Submission15810 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Classification, Calibration
Abstract: Accurate classification requires not only high predictive accuracy but also well-calibrated confidence estimates. Yet, modern deep neural networks (DNNs) are often overconfident, primarily due to overfitting on the negative log-likelihood (NLL). While focal loss variants alleviate this issue, they typically reduce accuracy, revealing a persistent trade-off between calibration and predictive performance. Motivated by the complementary strengths of generative and discriminative classifiers, we propose Generative Cross-Entropy (GCE), which maximizes $p(x|y)$ and is equivalent to cross-entropy augmented with a class-level confidence regularizer. Under mild conditions, GCE is *strictly proper*. Across CIFAR-10/100, Tiny-ImageNet, and a medical imaging benchmark, GCE improves both accuracy and calibration over cross-entropy, especially in the long-tailed scenario. Combined with adaptive piecewise temperature scaling (ATS), GCE attains calibration competitive with focal-loss variants without sacrificing accuracy.
Primary Area: interpretability and explainable AI
Submission Number: 15810
Loading