AtmosArena: Benchmarking Foundation Models for Atmospheric Sciences

28 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: foundation models, atmospheric sciences, benchmarks
TL;DR: We introduce AtmosArena, the first benchmark dedicated to foundation models in atmospheric sciences.
Abstract: Deep learning has emerged as a powerful tool for atmospheric sciences, showing significant utility across various tasks in weather and climate modeling. In line with recent progress in language and vision foundation models, there are growing efforts to scale and finetune such models for multi-task spatiotemporal reasoning. Despite promising results, existing works often evaluate their model on a small set of non-uniform tasks, which makes it hard to quantify broad generalization across diverse tasks and domains. To address this challenge, we introduce AtmosArena, the first multi-task benchmark dedicated to foundation models in atmospheric sciences. AtmosArena comprises a suite of tasks that cover a broad spectrum of applications in atmospheric physics and atmospheric chemistry. To showcase the capabilities and key features of our benchmark, we conducted extensive experiments to evaluate two state-of-the-art deep learning models, ClimaX and Stormer on AtmosArena, and compare their performance with other deep learning and traditional baselines. By providing a standardized, open-source benchmark, we aim to facilitate further advancements in the field, much like open-source benchmarks have driven the development of foundation models for language and vision.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12939
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview