Keywords: Cooperative multi-agent reinforcement learning, Fully decentralized setting, Context modeling
TL;DR: This paper enhances the fully decentralized cooperative multi-agent reinforcement learning from a context modeling perspective.
Abstract: In this paper, we consider fully decentralized cooperative multi-agent reinforcement learning, where each agent has access only to the states, its local actions, and the shared rewards. The absence of information about other agents' actions typically leads to the non-stationarity problem during per-agent value function updates, and the relative overgeneralization issue during value function estimation. However, existing works fail to address both issues simultaneously, as they lack the capability to model the agents' joint policy in a fully decentralized setting. To overcome this limitation, we propose a simple yet effective method named Return-Aware Context (RAC). RAC formalizes the dynamically changing task, as locally perceived by each agent, as a contextual Markov Decision Process (MDP), and addresses both non-stationarity and relative overgeneralization through return-aware context modeling. Specifically, the contextual MDP attributes the non-stationary local dynamics of each agent to switches between contexts, each corresponding to a distinct joint policy. Then, based on the assumption that the joint policy changes only between episodes, RAC distinguishes different joint policies by the training episodic return and constructs contexts using discretized episodic return values. Accordingly, RAC learns a context-based value function for each agent to address the non-stationarity issue during value function updates. For value function estimation, an individual optimistic marginal value is constructed to encourage the selection of optimal joint actions, thereby mitigating the relative overgeneralization problem. Experimentally, we evaluate RAC on various cooperative tasks (including matrix game, predator and prey, and SMAC), and its significant performance validates its effectiveness.
Supplementary Material: zip
Primary Area: Reinforcement learning (e.g., decision and control, planning, hierarchical RL, robotics)
Submission Number: 2222
Loading