Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Equivariant networks, SO(3) Equivariance, Fourier features
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a frequency-based rotation equivariant feature representation for 3D data.
Abstract: The usage of 3D vision algorithms, such as shape reconstruction, remains limited because they require inputs to be at a fixed canonical rotation. Recently, a simple equivariant network, Vector Neuron (VN) has been proposed that can be easily used with the state-of-the-art 3D neural network (NN) architectures. However, its performance is limited because it is designed to use only three-dimensional features, which is insufficient to capture the details present in 3D data. In this paper, we introduce an equivariant feature representation for mapping a 3D point to a high-dimensional feature space. Our feature can discern multiple frequencies present in 3D data, which, as shown by Tancik et al. (2020), is the key to designing an expressive feature for 3D vision tasks. Our representation can be used as an input to VNs, and the results demonstrate that with our feature representation, VN captures more details, overcoming the limitation raised in its original paper.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 9205
Loading