From Adaptive Query Release to Machine UnlearningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: machine unlerarning, stochastic convex optimization
TL;DR: Efficient algorithms for exact machine unlearning for stochastic convex optimization
Abstract: We formalize the problem of machine unlearning as design of efficient unlearning algorithms corresponding to learning algorithms which perform a selection of adaptive queries from structured query classes. We give efficient unlearning algorithms for linear and prefix-sum query classes. As applications, we show that unlearning in many problems, in particular, stochastic convex optimization (SCO), can be reduced to the above, yielding improved guarantees for the problem. In particular, for smooth Lipschitz losses and any $\rho>0$, our results yield an unlearning algorithm with excess population risk of $\tilde O\big(\frac{1}{\sqrt{n}}+\frac{\sqrt{d}}{n\rho}\big)$ with unlearning query (gradient) complexity $\tilde O(\rho \cdot \text{Retraining Complexity})$, where $d$ is the model dimensionality and $n$ is the initial number of samples. For non-smooth Lipschitz losses, we give an unlearning algorithm with excess population risk $\tilde O\big(\frac{1}{\sqrt{n}}+\big(\frac{\sqrt{d}}{n\rho}\big)^{1/2}\big)$ with the same unlearning query (gradient) complexity. Furthermore, in the special case of Generalized Linear Models (GLMs), such as those in linear and logistic regression, we get dimension-independent rates of $\tilde O\big(\frac{1}{\sqrt{n}} +\frac{1}{(n\rho)^{2/3}}\big)$ and $\tilde O\big(\frac{1}{\sqrt{n}} +\frac{1}{(n\rho)^{1/3}}\big)$ for smooth Lipschitz and non-smooth Lipschitz losses respectively. Finally, we give generalizations of the above from one unlearning request to dynamic streams consisting of insertions and deletions.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
19 Replies

Loading