Keywords: Time-series generation, Diffusion models, Signal processing
Abstract: Score-based generative models (SGMs) have demonstrated unparalleled sampling quality and diversity in numerous fields, such as image generation, voice synthesis, and tabular data synthesis, etc. Inspired by those outstanding results, we apply SGMs to synthesize time-series by learning its conditional score function. To this end, we present a conditional score network for time-series synthesis, deriving a denoising score matching loss tailored for our purposes. In particular, our presented denoising score matching loss is the conditional denoising score matching loss for time-series synthesis. In addition, our framework is such flexible that both regular and irregular time-series can be synthesized with minimal changes to our model design. Finally, we obtain exceptional synthesis performance on various time-series datasets, achieving state-of-the-art sampling diversity and quality.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10657
Loading