Replicable Clustering

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: Theory, Clustering Theory, Statistical Learning Theory, Reproducibility, Replicability
TL;DR: We design replicable algorithms for statistical k-medians, statistical k-means, and statistical k-centers.
Abstract: We design replicable algorithms in the context of statistical clustering under the recently introduced notion of replicability from Impagliazzo et al. [2022]. According to this definition, a clustering algorithm is replicable if, with high probability, its output induces the exact same partition of the sample space after two executions on different inputs drawn from the same distribution, when its internal randomness is shared across the executions. We propose such algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their combinatorial counterparts in a black-box manner. In particular, we demonstrate a replicable $O(1)$-approximation algorithm for statistical Euclidean $k$-medians ($k$-means) with $\operatorname{poly}(d)$ sample complexity. We also describe an $O(1)$-approximation algorithm with an additional $O(1)$-additive error for statistical Euclidean $k$-centers, albeit with $\exp(d)$ sample complexity. In addition, we provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
Submission Number: 1481