Dual Mixture-of-Experts Framework for Discrete-Time Survival Analysis

Published: 23 Sept 2025, Last Modified: 18 Oct 2025TS4H NeurIPS 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Survival Analysis; Mixture of Experts; Deep Learning; Health Care;
Abstract: Survival analysis is a task to model the time until an event of interest occurs, widely used in clinical and biomedical research. A key challenge is to model patient heterogeneity while also adapting risk predictions to both individual characteristics and temporal dynamics. We propose a dual mixture-of-experts (MoE) framework for discrete-time survival analysis. Our approach combines a feature-encoder MoE for subgroup-aware representation learning with a hazard MoE that leverages patient features and time embeddings to capture temporal dynamics. This dual-MoE design flexibly integrates with existing deep learning–based survival pipelines. On METABRIC and GBSG breast cancer datasets, our method consistently improves performance, boosting the time-dependent C-index up to 0.04 on the test sets, and yields further gains when incorporated into the Consurv framework.
Submission Number: 9
Loading