Keywords: Neural Network, Tree Search, Game Theory, Coarse Correlated Equilibrium, No regret learning
TL;DR: First successful integration of no-regret learning and neural networks creates a high performing algorithm
Abstract: Neural network supported tree-search has shown strong results in a variety of perfect information multi-agent tasks. However, the performance of these methods on partial information games has generally been below competing approaches. Here we study the class of simultaneous-move games, which are a subclass of partial information games which are most similar to perfect information games: both agents know the game state with the exception of the opponent's move, which is revealed only after each agent makes its own move. Simultaneous move games include popular benchmarks such as Google Research Football and Starcraft.
In this study we answer the question: can we take tree search algorithms trained through self-play from perfect information settings and adapt them to simultaneous move games without significant loss of performance? We answer this question by deriving a practical method that attempts to approximate a coarse correlated equilibrium as a subroutine within a tree search. Our algorithm works on cooperative, competitive, and mixed tasks. Our results are better than the current best MARL algorithms on a wide range of accepted baselines.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5282
Loading