Abstract: This paper aims to analyze the generalization power of deep neural networks (DNNs) from the perspective of interactions. Unlike previous analysis of a DNN's generalization power in a highdimensional feature space, we find that the generalization power of a DNN can be explained as the generalization power of the interactions. We found that the generalizable interactions follow a decay-shaped distribution, while non-generalizable interactions follow a spindle-shaped distribution. Furthermore, our theory can effectively disentangle these two types of interactions from a DNN. We have verified that our theory can well match real interactions in a DNN in experiments.
Loading