Augmentation Component Analysis: Modeling Similarity via the Augmentation OverlapsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Abstract: Self-supervised learning aims to learn a embedding space where semantically similar samples are close. Contrastive learning methods pull views of samples together and push different samples away, which utilizes semantic invariance of augmentation but ignores the relationship between samples. To better exploit the power of augmentation, we observe that semantically similar samples are more likely to have similar augmented views. Therefore, we can take the augmented views as a special description of a sample. In this paper, we model such a description as the augmentation distribution, and we call it augmentation feature. The similarity in augmentation feature reflects how much the views of two samples overlap and is related to their semantical similarity. Without computational burdens to explicitly estimate values of the augmentation feature, we propose Augmentation Component Analysis (ACA) with a contrastive-like loss to learn principal components and an on-the-fly projection loss to embed data. ACA equals an efficient dimension reduction by PCA and extracts low-dimensional embeddings, theoretically preserving the similarity of augmentation distribution between samples. Empirical results show that our method can achieve competitive results against various traditional contrastive learning methods on different benchmarks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Supplementary Material: zip
19 Replies

Loading