MePo: Meta Post-Refinement for Rehearsal-Free General Continual Learning

ICLR 2026 Conference Submission223 Authors

01 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: continual learning, catastrophic forgetting, transfer learning, prompt tuning, meta learning
TL;DR: We propose a meta post-refinement approach to address general continual learning based on parameter-efficient tuning of pretrained models.
Abstract: To cope with uncertain changes of the external world, intelligent systems must continually learn from complex, evolving environments and respond in real time. This ability, collectively known as general continual learning (GCL), encapsulates practical challenges such as online datastreams and blurry task boundaries. Although leveraging pretrained models (PTMs) has greatly advanced conventional continual learning (CL), these methods remain limited in reconciling the diverse and temporally mixed information along a single pass, resulting in sub-optimal GCL performance. Inspired by meta-plasticity and reconstructive memory in neuroscience, we introduce here an innovative approach named **Me**ta **Po**st-Refinement (MePo) for PTMs-based GCL. This approach constructs pseudo task sequences from pretraining data and develops a bi-level meta-learning paradigm to refine the pretrained backbone, which serves as a prolonged pretraining phase but greatly facilitates rapid adaptation of representation learning to downstream GCL tasks. MePo further initializes a meta covariance matrix as the reference geometry of pretrained representation space, enabling GCL to exploit second-order statistics for robust output alignment. MePo serves as a plug-in strategy that achieves significant performance gains across a variety of GCL benchmarks and pretrained checkpoints in a rehearsal-free manner (e.g., 15.10\%, 13.36\%, and 12.56\% on CIFAR-100, ImageNet-R, and CUB-200 under Sup-21/1K).
Supplementary Material: zip
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 223
Loading