Manifold Constraint Reduces Exposure Bias in Accelerated Diffusion Sampling

ICLR 2025 Conference Submission1547 Authors

18 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion Models, Exposure Bias
Abstract: Diffusion models have demonstrated significant potential for generating high-quality images, audio, and videos. However, their iterative inference process entails substantial computational costs, limiting practical applications. Recently, researchers have introduced accelerated sampling methods that enable diffusion models to generate samples with far fewer timesteps than those used during training. Nonetheless, as the number of sampling steps decreases, the prediction errors significantly degrade the quality of generated outputs. Additionally, the inherent exposure bias in diffusion models causes errors to propagate and amplify, further introducing non-negligible inaccuracies in inference. To address these challenges, we leverage a manifold hypothesis to explore the exposure bias problem in depth. Based on this geometric perspective, we propose a manifold constraint that effectively reduces exposure bias during accelerated sampling of diffusion models. Notably, our method involves no additional training and requires only minimal hyperparameter tuning. Extensive experiments on high-resolution datasets demonstrate the effectiveness of our approach, achieving a FID score of 15.60 with 10-step SDXL on MS-COCO, surpassing the baseline by a reduction of 2.57 in FID.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1547
Loading