Keywords: random neural networks, recurrent neural networks, plasticity, deep learning, neuroscience, multi-task learning
Abstract: Landmark universal function approximation results for neural networks with trained weights and biases provided the impetus for the ubiquitous use of neural networks as learning models in neuroscience and Artificial Intelligence (AI). Recent work has extended these results to networks in which a smaller subset of weights (e.g., output weights) are tuned, leaving other parameters random. However, it remains an open question whether universal approximation holds when only biases are learned, despite evidence from neuroscience and AI that biases significantly shape neural responses. The current paper answers this question. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can approximate any continuous function on compact sets. We further show an analogous result for the approximation of dynamical systems with recurrent neural networks. Our findings are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on recent fine-tuning methods for large language models, like bias and prefix-based approaches.
Supplementary Material: zip
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7964
Loading