Keywords: Machine unlearning, Security, Privacy, Attack
Abstract: Machine unlearning algorithms, designed for selective removal of training data from models, have emerged as a promising approach to growing privacy concerns. In this work, we expose a critical yet underexplored vulnerability in the deployment of unlearning systems: the assumption that the data requested for removal is always part of the original training set. We present a threat model where an attacker can degrade model accuracy by submitting adversarial unlearning requests for data \textit{not} present in the training set. We propose white-box and black-box attack algorithms and evaluate them through a case study on image classification tasks using the CIFAR-10 and ImageNet datasets, targeting a family of widely used unlearning methods. Our results show extremely poor test accuracy following the attack—3.6% on CIFAR-10 and 0.4% on ImageNet for white-box attacks, and 8.5% on CIFAR-10 and 1.3% on ImageNet for black-box attacks. Additionally, we evaluate various verification mechanisms to detect the legitimacy of unlearning requests and reveal the challenges in verification, as most of the mechanisms fail to detect stealthy attacks without severely impairing their ability to process valid requests. These findings underscore the urgent need for research on more robust request verification methods and unlearning protocols, should the deployment of machine unlearning systems become more prevalent in the future.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3925
Loading