Physically Plausible and Conservative Solutions to Navier-Stokes Equations Using Physics-Informed CNNsDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Finite volume method, Navier-Stokes equation, Partial differential equation, Physics-informed convolutional neural network
TL;DR: Solving Navier-Stokes Equations Using PICNN
Abstract: Physics-informed Neural Network (PINN) is an emerging approach for efficiently solving partial differential equations (PDEs) using neural networks. PICNN, a variant of PINN enhanced by convolutional neural networks (CNNs), has achieved better results on a series of PDEs since the parameter-sharing property of CNNs is effective to learn spatial dependencies. However, applying existing PICNN-based methods to solve Navier-Stokes equations can generate oscillating predictions, which are inconsistent with the laws of physics and the conservation properties. To address this issue, we propose a novel method that combines PICNN with the finite volume method to obtain physically plausible and conservative solutions to Navier-Stokes equations. We derive the second-order upwind difference scheme of Navier-Stokes equations using the finite volume method. Then we use the derived scheme to calculate the partial derivatives and construct the physics-informed loss function. The proposed method is assessed by experiments on steady-state Navier-Stokes equations under different scenarios, including convective heat transfer, lid-driven cavity flow, etc. The experimental results demonstrate that our method can effectively improve the plausibility and the accuracy of the predicted solutions from PICNN.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
4 Replies

Loading