Ensemble Debiasing Across Class and Sample Levels for Fairer Prompting Accuracy

Published: 08 Jul 2025, Last Modified: 26 Aug 2025COLM 2025EveryoneRevisionsBibTeXCC BY-NC-SA 4.0
Keywords: ensemble debiasing, accuracy imbalance, Heaviside step function, post-hoc correction
TL;DR: We propose a Heaviside step function based ensemble debiasing method, to flexibly rectify biased ICL output class probabilities across both class and sample levels, achieving fairer prompting accuracy for LLMs.
Abstract: Language models are strong few-shot learners and achieve good overall accuracy in text classification tasks, masking the fact that their results suffer from great class accuracy imbalance. We believe that the pursuit of overall accuracy should not come from enriching the strong classes, but from raising up the weak ones. To address the imbalance, we propose a Heaviside step function based ensemble debiasing method, which enables flexible rectifications of in-context learned class probabilities at both class and sample levels. Evaluations with Llama-2-13B on seven text classification benchmarks show that our approach achieves state-of-the-art overall accuracy gains with balanced class accuracies. More importantly, we perform analyses on the resulted probability correction scheme, showing that sample-level corrections are necessary to elevate weak classes. Due to effectively correcting weak classes, our method also brings significant performance gains to a larger model variant, Llama-2-70B, especially on a biomedical domain task, further demonstrating the necessity of ensemble debiasing at both levels. Our source code is available at https://github.com/NUS-HPC-AI-Lab/DCS.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 260
Loading