Better with Less: Data-Active Pre-training of Graph Neural NetworksDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Pre-training, Graph Neural Networks
Abstract: Recently, pre-training on graph neural networks (GNNs) has become an active research area and is used to learn transferable knowledge for downstream tasks with unlabeled data. The success of graph pre-training models is often attributed to the massive amount of input data. In this paper, however, we identify the curse of big data phenomenon in graph pre-training: more training samples and graph datasets do not necessarily lead to better performance. Motivated by this observation, we propose a better-with-less framework for graph pre-training: few, but carefully chosen data are fed into a GNN model to enhance pre-training. This novel pre-training pipeline is called the data-active graph pre-training (APT) framework, and is composed of a graph selector and a pre-training model. The graph selector chooses the most representative and instructive data points based on the inherent properties of graphs as well as the predictive uncertainty. The proposed uncertainty, as feedback from the pre-training model, measures the confidence level of the model to the data. When fed with the chosen data, on the other hand, the pre-training model grasps an initial understanding of the new, unseen data, and at the same time attempts to remember the knowledge learnt from the previous data. Therefore, the integration and interaction between these two components form a unified framework, in which graph pre-training is performed in a progressive way. Experiment results show that the proposed APT framework is able to obtain an efficient pre-training model with fewer training data and better downstream performance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
27 Replies

Loading