Image Classification by Throwing Quantum Kitchen Sinks at Tensor NetworksDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Abstract: Several variational quantum circuit approaches to machine learning have been proposed in recent years, with one promising class of variational algorithms involving tensor networks operating on states resulting from local feature maps. In contrast, a random feature approach known as quantum kitchen sinks provides comparable performance, but leverages non-local feature maps. Here we combine these two approaches by proposing a new circuit ansatz where a tree tensor network coherently processes the non-local feature maps of quantum kitchen sinks, and we run numerical experiments to empirically evaluate the performance of image classification with the new ansatz. From the perspective of classification performance, we find that simply combining quantum kitchen sinks with tensor networks yields no qualitative improvements. However, the addition of feature optimization greatly boosts performance, leading to state-of-the-art quantum circuits for image classification, requiring only shallow circuits and a small number of qubits -- both well within reach of near-term quantum devices.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
5 Replies

Loading