Keywords: hypernetwork, tabular data, meta-learning, foundational models
TL;DR: MotherNet is a foundational hypernetwork that can produce trained neural networks for small tabular datasets using in-context learning without finetuning.
Abstract: Foundation models are transforming machine learning across many modalities, with in-context learning replacing classical model training. Recent work on tabular data hints at a similar opportunity to build foundation models for classification for numerical data. However, existing meta-learning approaches can not compete with tree-based methods in terms of inference time. In this paper, we propose MotherNet, a hypernetwork architecture trained on synthetic classification tasks that, once prompted with a never-seen-before training set generates the weights of a trained ``child'' neural-network by in-context learning using a single forward pass. In contrast to most existing hypernetworks that are usually trained for relatively constrained multi-task settings, MotherNet can create models for multiclass classification on arbitrary tabular datasets without any dataset specific gradient descent.
The child network generated by MotherNet outperforms neural networks trained using gradient descent on small datasets, and is competitive with predictions by TabPFN and standard ML methods like Gradient Boosting. Unlike a direct application of TabPFN, MotherNet generated networks are highly efficient at inference time.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7906
Loading