COBias and Debias: Minimizing Language Model Pairwise Accuracy Bias via Nonlinear Integer Programming

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large language models, class prediction accuracy imbalance, evaluation metric, nonlinear integer programming
Abstract: When performing classification tasks with language models, would you prefer having only one highly accurate class or having every class deliver reliable performance? Obviously, a more balanced accuracy among classes better reflects the expectations of the majority of users. Especially for large language models (LLMs), the fact that they achieve a fair overall accuracy by in-context learning (ICL) obscures a large difference in individual class accuracies. In this work, we uncover and tackle language models' imbalance in per-class prediction accuracy by reconceptualizing it as the Contextual Oddity Bias (COBias), and we are the first to engage nonlinear integer programming (NIP) to debias it. Briefly, the proposed COBias metric measures accuracy differences among class pairs, with which we reveal the large per-class accuracy differences exhibited in LLMs of varied scales and families. Then we propose Debiasing as Nonlinear Integer Programming (DNIP) to correct ICL per-class probabilities towards lower COBias and higher overall accuracy. Our optimization objective is directly based on the evaluation scores by COBias and accuracy metrics, which is non-differentiable and solved by the simulated annealing metaheuristic. Evaluations on three LLMs across seven NLP classification tasks show that DNIP simultaneously achieves significant COBias reduction (-27\%) and accuracy improvement (+12\%) over the conventional ICL approach, suggesting that modeling pairwise class accuracy differences is a direction in pushing forward more accurate, more reliable LLM predictions.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5617
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview