STAR: Stability-Inducing Weight Perturbation for Continual Learning

ICLR 2025 Conference Submission2224 Authors

20 Sept 2024 (modified: 21 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Continual Learning, Deep Learning, Weight Perturbation, Representation Learning
TL;DR: In Continual Learning, we regularize the divergence of the model output distribution with regards to past data via worst-case weight perturbation, alleviating forgetting in future updates.
Abstract: Humans can naturally learn new and varying tasks in a sequential manner. Continual learning is a class of learning algorithms that updates its learned model as it sees new data (on potentially new tasks) in a sequence. A key challenge in continual learning is that as the model is updated to learn new tasks, it becomes susceptible to \textit{catastrophic forgetting}, where knowledge of previously learned tasks is lost. A popular approach to mitigate forgetting during continual learning is to maintain a small buffer of previously-seen samples, and to replay them during training. However, this approach is limited by the small buffer size and, while forgetting is reduced, it is still present. In this paper, we propose a novel loss function STAR that exploits the worst-case parameter perturbation that reduces the KL-divergence of model predictions with that of its local parameter neighborhood to promote stability and alleviate forgetting. STAR can be combined with almost any existing rehearsal-based methods as a plug-and-play component. We empirically show that STAR consistently improves performance of existing methods by up to $\sim15\%$ across varying baselines, and achieves superior or competitive accuracy to that of state-of-the-art methods aimed at improving rehearsal-based continual learning.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2224
Loading