Lyria: A General LLM‑Driven Genetic Algorithm Framework for Problem Solving

ACL ARR 2025 May Submission1396 Authors

17 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: While Large Language Models (LLMs) have demonstrated impressive abilities across various domains, they still struggle with complex problems characterized by multi-objective optimization, precise constraint satisfaction, immense solution spaces, etc. To address the limitation, drawing on the superior semantic understanding ability of LLMs and also the outstanding global search and optimization capability of genetic algorithms, we propose to capitalize on their respective strengths and introduce Lyria, a general LLM-driven genetic algorithm framework, comprising 7 essential components. Through conducting extensive experiments with 4 LLMs across 3 types of problems, we demonstrated the efficacy of Lyria. Additionally, with 7 additional ablation experiments, we further systematically analyzed and elucidated the factors that affect its performance.
Paper Type: Long
Research Area: Machine Learning for NLP
Research Area Keywords: optimization methods
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 1396
Loading