Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information Maximization NetworkDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Graph-level clustering, Graph representation learning, Deep learning, Unsupervised learning
Abstract: In this work, we study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar. This problem was rarely studied previously, although there have been a lot of work on node clustering and graph classification. The problem is challenging because it is difficult to measure the similarity or distance between graphs. One feasible approach is using graph kernels to compute a similarity matrix for the graphs and then performing spectral clustering, but the effectiveness of existing graph kernels in measuring the similarity between graphs is very limited. To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC). DGLC utilizes a graph isomorphism network to learn graph-level representations by maximizing the mutual information between the representations of entire graphs and substructures, under the regularization of a clustering module that ensures discriminative representations via pseudo labels. DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner. The experimental results on six benchmark datasets of graphs show that our DGLC has state-of-the-art performance in comparison to many baselines.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Supplementary Material: zip
4 Replies

Loading