STBLLM: Breaking the 1-Bit Barrier with Structured Binary LLMs

ICLR 2025 Conference Submission66 Authors

13 Sept 2024 (modified: 19 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: structured sparsification, language model, model compression, binary neural networks, computational efficiency
TL;DR: We introduces STBLLM, a novel approach that breaks the 1-bit barrier in language models by leveraging Structured Binary LLMs.
Abstract: In this paper, we present the first structural binarization method for LLM compression to less than 1-bit precision. Although LLMs have achieved remarkable performance, their memory-bound nature during the inference stage hinders the adoption of resource-constrained devices. Reducing weights to 1-bit precision through binarization substantially enhances computational efficiency. We observe that some weights in binarized LLMs can be randomly flipped without significant performance degradation, suggesting the potential for further compression. To exploit this, our STBLLM employs an N:M sparsity technique to achieve structural binarization of the weights. Specifically, we introduce a novel Standardized Importance (SI) metric, which considers weight magnitude and input feature norm to more accurately assess weight significance. Then, we propose a layer-wise approach, allowing different layers of the LLM to be sparsified with varying N:M ratios, thereby balancing compression and accuracy. Furthermore, we implement a fine-grained grouping strategy for less important weights, applying distinct quantization schemes to sparse, intermediate, and dense regions. Finally, we design a specialized CUDA kernel to support structural binarization. We conduct extensive experiments on LLaMA-1/2/3, OPT family, and Mistral to evaluate the effectiveness of STBLLM. The results demonstrate that our approach performs better than other compressed binarization LLM methods while significantly reducing memory requirements.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 66
Loading