Beyond Surface Alignment: Rebuilding LLMs Safety Mechanism via Probabilistically Ablating Refusal Direction

ACL ARR 2025 May Submission5730 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Jailbreak attacks pose persistent threats to large language models (LLMs). Current safety alignment methods have attempted to address these issues, but they experience two significant limitations: insufficient safety alignment depth and unrobust internal defense mechanisms. These limitations make them vulnerable to adversarial attacks such as prefilling and refusal direction manipulation. We introduce DeepRefusal, a robust safety alignment framework that overcomes these issues. DeepRefusal forces the model to dynamically rebuild its refusal mechanisms from jailbreak states. This is achieved by probabilistically ablating the refusal direction across layers and token depths during fine-tuning. Our method not only defends against prefilling and refusal direction attacks but also demonstrates strong resilience against other unseen jailbreak strategies. Extensive evaluations on four open-source LLM families and six representative attacks show that DeepRefusal reduces attack success rates by approximately 95%, while maintaining model capabilities with minimal performance degradation.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: safety and alignment,robustness,transfer
Contribution Types: Model analysis & interpretability, NLP engineering experiment
Languages Studied: English
Submission Number: 5730
Loading