From Chaotic OCR Words to Coherent Document: A Fine-to-Coarse Zoom-Out Network for Complex-Layout Document Image Translation

Published: 09 Dec 2024, Last Modified: 20 Dec 2024COLINGEveryoneCC BY 4.0
Abstract: Document Image Translation (DIT) aims to translate documents in images from one language to another. It requires visual layouts and textual contents understanding, as well as document coherence capturing. However, current methods often rely on the quality of OCR output, which, particularly in complex-layout scenarios, frequently loses the crucial document coherence, leading to chaotic text. To overcome this problem, we introduce a novel end-to-end network, named Zoom-out DIT (ZoomDIT), inspired by human translation procedures. It jointly accomplishes the multi-level tasks including word positioning, sentence recognition & translation, and document organization, based on a fine-to-coarse zoom-out framework, to progressively realize "chaotic words to coherent document'' and improve translation. We further contribute a new large-scale DIT dataset with multi-level fine-grained labels. Extensive experiments on public and our new dataset demonstrate significant improvements in translation quality towards complex-layout document images, offering a robust solution for reorganizing the chaotic OCR outputs to a coherent document translation.
Loading