Causal Interpretation of Neural Network Computations with Contribution Decomposition (CODEC)

ICLR 2026 Conference Submission22669 Authors

20 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: mechanistic interpretibility, neuroscience, xai, ai safety, tool-development
TL;DR: Using a novel famework borrowed from a century of neuroscience experiments, we gain insight into, and causal control over, intermediate layers of benchmark image-classification networks.
Abstract: Understanding how neural networks transform inputs into outputs is crucial for interpreting and manipulating their behavior. Most existing approaches analyze internal representations by identifying hidden-layer activation patterns correlated with human-interpretable concepts. Here we take a direct approach to examine how hidden neurons act to drive network outputs. We introduce CODEC ($\textbf{Co}$ntribution $\textbf{Dec}$omposition), a method that uses sparse autoencoders to decompose network behavior into sparse motifs of hidden-neuron contributions, revealing causal processes that cannot be determined by analyzing activations alone. Applying CODEC to benchmark image-classification networks, we find that contributions grow in sparsity and dimensionality across layers and, unexpectedly, that they progressively decorrelate positive and negative effects on outputs. We further show that decomposing contributions into sparse modes enables greater control and interpretation of intermediate layers, supporting both causal manipulations of network output and human-interpretable visualizations of distinct image components that combine to drive that output. Finally, by analyzing state-of-the-art models of retinal activity, we demonstrate that CODEC uncovers combinatorial actions of model interneurons and identifies the sources of dynamic receptive fields. Overall, CODEC provides a rich and interpretable framework for understanding how nonlinear computations evolve across hierarchical layers, establishing contribution modes as an informative unit of analysis for mechanistic insights into artificial neural networks.
Primary Area: interpretability and explainable AI
Submission Number: 22669
Loading