Measuring Interpretability of Neural Policies of Robots with Disentangled RepresentationDownload PDF

Published: 30 Aug 2023, Last Modified: 11 Oct 2023CoRL 2023 OralReaders: Everyone
Keywords: Interpretability, Disentangled Representation, Neural Policy
TL;DR: Investigate interpretability of compact neural policies with disentanglement and decision tree
Abstract: The advancement of robots, particularly those functioning in complex human-centric environments, relies on control solutions that are driven by machine learning. Understanding how learning-based controllers make decisions is crucial since robots are mostly safety-critical systems. This urges a formal and quantitative understanding of the explanatory factors in the interpretability of robot learning. In this paper, we aim to study interpretability of compact neural policies through the lens of disentangled representation. We leverage decision trees to obtain factors of variation [1] for disentanglement in robot learning; these encapsulate skills, behaviors, or strategies toward solving tasks. To assess how well networks uncover the underlying task dynamics, we introduce interpretability metrics that measure disentanglement of learned neural dynamics from a concentration of decisions, mutual information and modularity perspective. We showcase the effectiveness of the connection between interpretability and disentanglement consistently across extensive experimental analysis.
Student First Author: yes
Supplementary Material: zip
Instructions: I have read the instructions for authors (https://corl2023.org/instructions-for-authors/)
Code: https://github.com/zswang666/interpret-by-disentangle
Publication Agreement: pdf
23 Replies

Loading