bio2token: all-atom tokenization of any biomolecular structure with mamba

ICLR 2025 Conference Submission1208 Authors

16 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: all-atom biomolecular generation, long context, auto-encoder, tokenization
TL;DR: We develop quantized auto-encoders to tokenize small molecules, proteins and RNA on the all-atom level and train generative structure prediction tasks with mamba
Abstract: Efficient encoding and representation of large 3D molecular structures with high fidelity is critical for biomolecular design applications. Despite this, many representation learning approaches restrict themselves to modeling smaller systems or use coarse-grained approximations of the systems, for example modeling proteins at the resolution of amino acid residues rather than at the level of individual atoms. To address this, we develop quantized auto-encoders that learn atom-level tokenizations of complete proteins, RNA and small molecule structures with reconstruction accuracies well below 1 Angstrom. We demonstrate that a simple Mamba state space model architecture is efficient compared to an SE(3)-invariant IPA architecture, reaches competitive accuracies and can scale to systems with almost 100,000 atoms. The learned structure tokens of bio2token may serve as the input for all-atom generative models in the future.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1208
Loading