Graph Structural Aggregation for Explainable LearningDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: graph, deep, learning
Abstract: Graph neural networks have proven to be very efficient to solve several tasks in graphs such as node classification or link prediction. These algorithms that operate by propagating information from vertices to their neighbors allow one to build node embeddings that contain local information. In order to use graph neural networks for graph classification, node embeddings must be aggregated to obtain a graph representation able to discriminate among different graphs (of possibly various sizes). Moreover, in analogy to neural networks for image classification, there is a need for explainability regarding the features that are selected in the graph classification process. To this end, we introduce StructAgg, a simple yet effective aggregation process based on the identification of structural roles for nodes in graphs that we use to create an end-to-end model. Through extensive experiments we show that this architecture can compete with state-of-the-art methods. We show how this aggregation step allows us to cluster together nodes that have comparable structural roles and how these roles provide explainability to this neural network model.
One-sentence Summary: An aggregation process to detect structural roles to bring explainability to a graph classification task.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=jTj1dePd02
5 Replies

Loading